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The widespread of fake news on social media and other platforms can bring significant damage to the
harmony and stability of our society. To defend against fake news, researchers have suggested various
ways of dealing with fake news. In recent years, fake news detection has become the research focus in
both academic and industrial communities. The majority of existing propagation-based fake news detec-
tion algorithms are based on static networks and they assume the whole information propagation net-
work structure is readily available before performing fake news detection algorithms. However, real-
world information diffusion networks are dynamic as new nodes joining the network and new edges
being created. To address these shortcomings, we proposed a dynamic propagation graph-based fake
news detection method to capture the missing dynamic propagation information in static networks
and classify fake news. Specifically, the proposed method models each news propagation graph as a series
of graph snapshots recorded at discrete time steps. We evaluate our approach on three real-world bench-
mark datasets, and the experimental results demonstrate the effectiveness of the proposed model.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, we have witnessed a rise in the success of a
number of online social media platforms such as Twitter1, Face-
book2 and Sina Weibo3. It not only allows us to connect with people
we never thought, but give us the opportunity to exchange of opin-
ions and news propagation faster like never before. However, online
social media platforms for news consumption is a double-edge
sword because it drives the spread of fake news at the same time
[2]. One possible explanation is that, compared to traditional news
media that usually requires extensive research, fact checking and
accurate coverage in order to be a reliable news resource, the
absence of effective regulatory and fact-checking measures over
each piece of news makes fake news can be easily created and pub-
lished online for primary motivations of influencing opinions and
seeking tempting rewards at low cost [3–6], which results in the fact
that online social media platforms have become a primary source for
spreading fake news [7].
Because the proliferation of fake news on social media may con-
fuse and misguide public opinions, change the way people respond
to real news and even disturb the social order [8,9], it has been
listed by the World Economic Forum (WEF) as one of the main
threats to our society [10]. Many works have shown that human
beings are not good at distinguishing fake news from fake news
[11]. To deal with fake news on social media, great efforts have
been growing in fact-checking, however, largely centered on man-
ual identification by a small group of highly credible fact-checkers.
Unfortunately, manual fact-checking is labor-intensive and has dif-
ficulty in scaling with the volume of emerging fake news [5,11,12].
Consequently, it is essential to study computational fake news
detection.

The inherent openness of social media platforms provides
opportunities to trace and study the digital footprints of fake news
[13]. By studying how users share and discuss fake news, we can
develop effective detection and intervention techniques to auto-
matically assess their veracity and avoid their dramatic effects
[14]. A typical example is that a series of engineering features man-
ually designed are fed into a machine learning-based algorithm to
evaluate the authenticity of the given news [15]. However, the
hand-craft feature extraction task is time consuming and poor in
generalizability, and may result in biased features [16]. Recently,
deep learning algorithms have been widely applied to many tasks
such as sentiment analysis [17], fake news detection [18] and
question answering [19], and have shown dramatic potential for
capturing complex patterns automatically. Deep learning
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techniques can be fed with raw data, which means that deep
learning-based fake news detection algorithms can bypass feature
engineering [11]. Consequently, we has witnessed that a lot of
deep learning-based fake news detection methods are proposed
to mitigate the shortcomings of traditional machine learning meth-
ods [20].

Social media news spreads in the form of shares and re-shares
of the source and shared posts, resulting in an information diffu-
sion network [21,22]. Previous work has proven that fake and real
news show difference in propagation patterns, which tells us that
the news propagation network can be used to improve the perfor-
mance of fake news detection algorithm [23–25]. Moreover, it is
difficult for the individual users to control the spread patterns of
news on social networks, which implies that propagation-based
approaches may have better robustness [26,5]. Hence, much efforts
have been devoted to investigated that how the news propagation
network on social media can help to detect fake news. [27–31].
They have achieved remarkable success in fake news detection
task.

Despite these advances, a major challenge now is that, most of
existing news propagation network-based fake news detection
algorithms overwhelmingly depend on static news propagation
graphs, assuming the entire news propagation graph is readily
available before performing fake news detection algorithms
[5,32]. In fact, real-world information propagation networks are
dynamic as new nodes joining the network and new edges being
created. Fig. 1 illustrates the difference between dynamic and static
news propagation networks. As shown in Fig. 1 (left), it shows a
discrete-time dynamic news dissemination graph where each net-
work represents a static graph snapshot and records user propa-
gating behaviors occurs before time stamps ½t1; t2; � � � ; tT �,
respectively. In contrast, Fig. 1 (right) depicts a static news propa-
gation network which only presents the structural information of
news propagation network without dynamic evolutionary pat-
terns. Recently studies have been conducted showing the strong
relationships of temporal engagement features of users with
authenticity of social media news [33–37]. Fig. 2 displays the aver-
age number of tweets or posts 4 on three real-world and widely
used public benchmark datasets [5]. The comparative analysis
between fake and real news may help to understand why we need
to build a dynamic propagation-based fake news detector. From
Fig. 2, we can easily find that differences of temporal propagation
patterns between fake and real news. To effectively utilize temporal
information to improve the performance of fake news detection
model, one essential task we confront is that build a time-aware fake
news detection method to model temporal patterns of news propa-
gation network.

Present work. To capture the missing dynamic propagation
information, we propose a dynamic propagation network-based
fake news detection architecture named Dynamic Graph Neural
network for Fake news detection (DGNF). Specifically, we model
the news propagation networks using the discrete-time dynamic
graph (DTDG) in this work. We first aggregate temporal informa-
tion of a news propagation graph into a sequence of static graph
snapshots. Then, DGNF generates a dynamic representation for
each snapshot using both structure-aware module and temporal-
aware module. The structure-aware module is responsible for
extracting features from local node neighborhoods and capturing
local structural information in each static graph snapshot. The
temporal-aware module is designed to capture temporal variations
in the graph structure by flexibly weighting historical node repre-
sentations over discrete time steps. Note that we extend the stan-
dard DGNF into two variants (i.e., DGNF-tsn and DGNF-tcn) with
4 The meaning of tweet is equal to post used in this paper.
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different temporal-aware modules (i.e., Temporal Self-Attention
Networks (TSN) and Temporal Convolutional Networks (TCN)
[38–40]). In summary, the contributions of this work include:

� In this paper, we study a novel problem of discrete-time
dynamic news propagation network-based fake news detection
task.
� We propose a discrete-time dynamic news propagation graph-
based fake news detection framework named DGNF to capture
dynamic evolution patterns and network structural information
of social media news diffusion graph.
� We conduct extensive experiments on three real-world datasets
to examine the performance of DGNF-tsn and DGNF-tcn, and the
experimental results demonstrate the effectiveness of the pro-
posed methods.

The rest of this paper is organized as follows. We briefly review the
related work on fake news detection in Section 2. Section 3 intro-
duces notations and formally defines the problem of fake news
detection. Section 4 introduces the DGNF-tsn model and DGNF-tcn
model. Section 5 describes the datasets and baselines used in our
experiments, and then provide experimental settings and result
analyses. Section 6 concludes the paper and discusses directions
for future work.
2. Related Work

To date, a considerable amount of methods have been proposed
to identify fake news using various features such as text, user and
propagation. In this section, we review the existing work from two
aspects: content-based and propagation-based fake news
detection.

Content-based Fake News Detection. Normally, news content
from online social media platforms is typically represented by
tweets, replies to those tweets, and several attached images [8].
Because this news that needs to be verified mainly textual content,
text are the most explicit features for identifying fake news
[4,41,42], which is the main reason that some early researchers
seek to directly evaluate news authenticity by quantify the differ-
ence of textual features between fake and real news [11,21]. A typ-
ical example is that a series of engineering features manually
designed which can be topic, Bag of Words, or n-gram features,
are then fed into one or more machine learning-based algorithms
to evaluate the authenticity of the given news [43–45]. Although
hand-crafted linguistic features-based methods showing promis-
ing results, these algorithms cannot fully capture fine-grained lin-
guistic information and show poor performance in generalizing the
information across disciplines [21].

To overcome the drawbacks, deep learning algorithms have
been widely applied in fake news detection in part because they
can automatically extract latent feature representation and capture
complex contextual patterns from raw news text. A representative
example is that, Ma et al. first designed a recurrent neural network
(RNN)-based algorithm to better capture long term dependencies
using most popular RNN architecture (i.e., Long Short-Term Mem-
ory (LSTM) and Gated Recurrent Unit (GRU)) [46]. Inspired by the
promising results convolutional neural networks (CNN) have
obtain on many text classification tasks, Wang et al. [47] later pro-
posed a set of simplified CNN-based baseline algorithms that used
only one layer of convolution on pre-trained word2vec embed-
dings [48]. By taking advantage of the attention mechanism can
learn automatically importance weights that can be used to
explain the contributions of words and sentences to a target claim,
scholars have applied attention mechanism to interpret the
identification of fake news detection algorithms [20,49]. Recently,



Fig. 1. Each network records users propagating behaviors occurs before time stamps ½t1; t2; � � � ; tT �, respectively. Each node denotes a tweet and each edge represents a share
or retweet. Left: discrete-time dynamic propagation network of a piece of social media news. Right: static propagation network of a piece of social media news.

Fig. 2. (a) The average number of tweets for Weibo dataset at different timestamps; (b) The average number of tweets for FakeNewsNet dataset at different timestamps; (c)
The average number of tweets for Twitter dataset at different timestamps [5].
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introducing external knowledge has become an increasingly popu-
lar way to help models understand text in deep learning for Natu-
ral Language Processing (NLP). Researchers have explored external
knowledge in spotting fake news detection because explaining the
news content usually need enough background or professional
knowledge [50,51,9]. In addition to the above work, academic
researchers also have used generative and adversarial training
techniques[52], domain adaption techniques [53,54], weak super-
vision techniques, Sentiment or emotion information [55–57], or
visual cues [58] to detect fake news on social media.

Propagation-based Fake News Detection. In addition to the
news content-based methods, more recent work highlighted the
importance of social media news propagation patterns, also known
as cascades, for identification of fake news [22,59–61]. The under-
lying assumption of propagation-based fake news detection is that
the propagation patterns of fake news differ from true ones in
some quantifiable way [59]. Propagation-based fake new detection
methods often combine text-based data with structural informa-
tion. To reflect the collective behavior of users engaging with
spreading fake news, the propagation patterns of social media
news are usually modeled as directed or undirected graphs [22].
According to the difference between nodes in interactions such
as user-to-user or user-to-content, established work in
propagation-based fake news detection generally falls in two cate-
gories: homogeneous and heterogeneous graph-based approaches
[2,62]. We usually call a news propagation network with a single
type of nodes and edges as homogeneous graph, and with two or
more types of nodes and edges as heterogeneous graph. For
instance, Ma et al. [63] proposed a RNN-based algorithm (i.e.,
RvNN) that infers fake news veracity based on the cascade struc-
ture of news propagation. Specifically, this algorithm models infor-
mation cascade as top-down and bottom-up the news propagation
tree structure. RvNN is a typical homogeneous graph-based
approach because each node represents a tweet or reply and each
edge denotes tweet-retweet relationship. Following the similar
idea with [63], Bian et al. [64] proposed the first graph neural net-
work (GNN)-based model, Bi-directional graph convolutional net-
works (BiGCN), for fake news detection by learning on both the
top-down diffusion and bottom-up propagation of social media
364
news. BiGCN outperformed RvNN and other competitive methods
by a substantial margin on three benchmark datasets. Yang et al.
[65] unified heterogeneous information network representation
and graph adversarial learning in a multi-task learning framework
to detect fake news. Nguyen et al. [66] proposed the Factual News
Graph (FANG) model which is an inductive heterogeneous network
representation architecture, explores relationship among news
article, sources and users, and could predict the veracity of social
media news spreading online by mining social structure and
engagement patterns of individuals.

Whereas the aforementioned approaches have been gained
some positive results, fewer efforts have been devoted to modeling
dynamic news cascade. Here, we purposefully focus only on homo-
geneous DTDG. The studies closely related to this work are [5,67].
Because [5] models news propagation patterns using homoge-
neous continuous-time dynamic graphs (CTDG), it is difficult to
make a fair comparison between [5] and this work directly. Choi
et al. [67] models news propagation patterns using homogeneous
DTDG. In [67], the authors also employed self-attention mecha-
nism to capture temporal information. DGNF-tsn is different from
[67] in following aspects: First, one of the important differences
between [67] and DGNF-tsn is that we introduce a special visible
matrix to prevent information leakage from the future into the
past; Second, we use the positional embeddings to help temporal
attention to capture ordering information, and additional residual
connections to improve the stability of the model; Third, our pro-
posed model learns the temporal propagation patterns from the
node-level, which leads to a more fine-grained nodal relationship
modeling for dynamic news propagation graphs; Fourth, the out-
put of temporal attention in DGNF-tsn is the feature representa-
tions of last snapshots, while the output of attention mechanism
in [67] is the average of feature embeddings of all snapshots.
3. Problem Formulation

Similar to [5], let G ¼ ðV;EÞ be an undirected unweighted static
graph representing a news propagation network.
V ¼ fv1; � � � ;v i; � � � ;vNg is the set of nodes and E is the set of
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edges, where v i represents a tweet, N represents the number of
relevant tweets in G, and M denotes the number of the observed
interaction events. hi 2 Rd is the feature representation of tweet
v i. Each edge eij 2 E denotes node v i has a response to v j, and also
can be formulated as an undirected unweighted adjacency matrix
A ¼ ½aij�N�N, where

aij ¼
1 if eij 2 E

0 otherwise

�
ð1Þ

Thus, we can define an undirected unweighted discrete-time
dynamic news propagation network as a series of static graph
snapshots G ¼ fGð1Þ; � � � ;GðtÞ; � � � ;GðTÞg where n is the number
of sessions. Each snapshot G tð Þ ¼ V tð Þ;E tð Þf g consists of the

nodes set VðtÞ ¼ v ðt1Þ1 ; � � � ;v ðtiÞi ; � � � ;v ðtN tð Þ Þ
N tð Þ

n o
and edges set

EðtÞwhere ti 6 t. Note that the nodes set VðtÞ and the edges

set EðtÞcould change over time. Each node v ðtiÞi 2VðtÞindicates
that the i-th tweet v i is published at time point ti. Each edge

e
ðtjÞ
ij 2 EðtÞ denotes that node v j has a response to v i at time
point tj where ti 6 tj 6 t. N tð Þ ¼ V tð Þj j is the number of nodes

in GðtÞ. MðtÞ ¼ jEðtÞj is the number of edges in GðtÞ. hiðtÞ 2 Rd

is the feature representation of tweet v ðtiÞi at time stamp t.
AðtÞ ¼ ½aijðtÞ�NðtÞ�NðtÞ is the undirected unweighted adjacency

matrix of GðtÞ, where

aijðtÞ ¼ 1 if e
ðtjÞ
ij 2 EðtÞ

0 otherwise

(
ð2Þ

When t ¼ T;G ¼ GðTÞ;V ¼VðTÞ;A ¼AðTÞ and N ¼NðTÞ. G is
associated with a ground-truth label y 2 f0;1g describing its verac-
ity, where y = 0 indicates G is true news, and y ¼ 1means G is fake
news. We formulate the fake news detection task in this paper as
follows.

Problem Definition: Given a collection of static news propaga-
tion network snapshotsG ¼ fGð1Þ; � � � ;GðtÞ; � � � ;GðTÞg over discrete
time stamps, this paper aims to learn a mapping function
F : FðGÞ ! ŷ to give a predicted label for G.

4. Model

4.1. Model Framework

Fig. 3 provides an overview of the proposed framework. The
structure-aware module and temporal-aware module are funda-
mental modules of the DGNF. The input is a collection of static
graph snapshots G, and the output is a corresponding class label.
For a static graph snapshot GðtÞ from G, the model first produces
the raw feature representation of each node in GðtÞ via input
embedding layer. Second, the adjacency matrix AðtÞ and node fea-
ture representations of GðtÞ are feed as input to the structure-
aware module to extracts features from local node neighborhoods.
Third, the sequences of node representations output by structure-
aware module is fed into the temporal-aware module to capture
network dynamic evolutionary patterns. At last, we can use any
dynamic embeddings of a static graph snapshot GðtÞ to predict
the veracity of G.

4.2. Input Embeddings

The input embedding layer is designed to create corresponding

raw feature representation for each tweet. Each word of node v ðtiÞi

is first mapped into a sequence of pretrained word embeddings:

½x1; � � � ;xj; � � ��  WordEmbedðv ðtiÞi Þ ð3Þ
365
where xj 2 Rd. The raw node v ðtiÞi feature representation of a tweet

is the average of all of the word vectors (i.e., xiðtÞ 2 Rd).

4.3. Structure-Aware Module

The structure-aware component is composed of multiple
stacked graph attention networks (GAT) [68] to extracts features
from local node neighborhoods in each snapshot. For a multi-

layer GAT, given a node v ðtiÞi with a hidden state hl 2 R1�dl at layer

l, GAT can update hidden state of node v ðtiÞi at layer lþ 1 with the
following layer-wise propagation rule:

hðlþ1Þi ¼ r
X
j2Ni

al
ijh

l
jW

l

 !
2 R1�dðlþ1Þ ð4Þ

where Ni is the neighborhood of node v ðtiÞi ;al
ij is the attention value

of node v ðtiÞi to v ðtjÞj in the lth layer, hl
j is feature representation of

node v ðtjÞj and output by ðl� 1Þth layer, Wl 2 Rdl�dðlþ1Þ is a trainable
weight matrix, and rð�Þ is an activation function. Note that, when

l ¼ 0;h0
j ¼ xjðtÞ and d0 ¼ d. Specifically, the attention coefficient

between node v ðtiÞi and v ðtjÞj can be expressed as:

al
ij ¼

exp LeakReLU hl
iw

l hl
jw

l
���h i

w
� �� �

X
k2Ni

exp LeakReLU hl
iwl hl

kwl
���h i

w
� �� � ð5Þ

wherew 2 R2dðlþ1Þ�1 is weight vector. For a node v ðtiÞi in a static graph
snapshot GðtÞ, its feature representation can be denoted as

hlþ1
i ðtÞ 2 R1�dðlþ1Þ . Thus, in the range 1 6 t 6 T , the feature represen-

tation sequence of node v ðtiÞi is defined as:

Hðlþ1Þi ¼ hðlþ1Þi 1ð Þ; � � � ;hðlþ1Þi tð Þ; � � � ;hðlþ1Þi Tð Þ
h i

2 Rn�dðlþ1Þ ð6Þ
4.4. Temporal-Aware Module

We can get DGNF-tsn model and DGNF-tcn model by designing
two variants of DGNF models based on TSN and TCN to encode the
temporal information from the sequence of node representations
output by structure-aware module. Specifically, we use temporal
convolutional and temporal self-attention blocks to aggregate node
features over time, respectively. The output of temporal-aware mod-
ule has the same dimension with its input.

Temporal convolutional block. The temporal convolutional
component is mainly composed of multiple stacked TCN layers.
As shown in Fig. 4, we provide an illustration to help readers easily
understand the TCN block, the key module of which is TCN. For-

mally, the TCN of the ðr þ 1Þth TCN layer can be written as:

Fðrþ1Þ Ur
i tð Þ� � ¼ Ur

i �sðrþ1Þ f
� �

tð Þ ¼
Xz�1
j¼0

fTj U
r
i t � sðrþ1Þj
� � ð7Þ

where � is 1D convolution operator, f 2 Rz�dðlþ1Þ is a convolutional fil-
ter with size z; sðrþ1Þ is the dilation factor which can be set as ðz� 1Þr
to obtain exponential growth receptive field, and Ur

i ð6 0Þ :¼ 0.

When r ¼ 0, for any node v ðtiÞi , the input of 1th TCN layer is

Hlþ1
i ¼ U0

i . We add weight norm, ReLU activation function and drop-

out operation to each TCN layer. Thus, the output of ðr þ 1Þth TCN
layer is:

Uðrþ1Þi ¼ Fðrþ1Þ Ur
i 1ð Þ� �

; � � � ; Fðrþ1Þ Ur
i tð Þ� �

; � � � ; Fðrþ1Þ Ur
i Tð Þ� �h i

ð8Þ



Fig. 3. The proposed model framework.

Fig. 4. An illustration for the TCN blocks.
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To make Uðrþ1Þi and Hðlþ1Þi have the same dimension (i.e.,

Uðrþ1Þi 2 Rn�dðlþ1Þ ), the number of filters of each TCN layer is set as

dðlþ1Þ. Specifically, the TCN is constructed based on causal convolu-
tion and dilated convolution. The causal convolution ensures the

output Uðrþ1Þi ðtÞonly depend on input Hðlþ1Þi ð6 tÞ, which means that
there is no information leakage from the future to past. The dilated
convolution makes receptive fields exponential to the number of
TCN layers. By adjusting dilation factor s, size of filter f and the
number of TCN layers, the Temporal convolutional module can
achieve flexible receptive fields, and explore the full temporal
information.

Temporal self-attention block. In this subsection, we present
another temporal-aware module (i.e., temporal self-attention
block), the input of which is the series of representations for a par-

ticular node v ðtiÞi recorded at n different time steps (i.e., Hðlþ1Þi ). The
366
temporal self-attention block is a stack of multiple TSN layers.
Same to TCN, TSN is also designed to capture graph evolution at

different time steps. To enable each node representation in Hðlþ1Þi

carries unique position information, we used the positional encod-
ing (PE) function introduced in [69] to embed temporal position of
each snapshot. The function is defined as:

PE pos;2jð Þ ¼ sin pos=100002j=dðlþ1Þ
� �

ð9Þ

PE pos;2jþ 1ð Þ ¼ cos pos=100002j=dðlþ1Þ
� �

ð10Þ

where pos 2 0; � � � ;pos; � � � ;n� 1½ � represents temporal position of

each snapshot, j 2 0;dðlþ1Þ=2
�h
refers to the the dimension. For any

node v ðtiÞi , the position embeddings P 2 Rdðlþ1Þ would be combined

with Hðlþ1Þi to obtain the following sequence of representations
across n time steps:

Hðlþ1Þi þ P ¼ hðlþ1Þi 1ð Þ þ pð1Þ; � � � ;hðlþ1Þi tð Þ
h
þpðtÞ; � � � ;hðlþ1Þi Tð Þ þ pðTÞ

i
2 Rn�dðlþ1Þ ð11Þ

Intuitively, hðlþ1Þi 6 tð Þ not contribute equally to hðlþ1Þi tð Þ in a given
dynamic graph. Thus, self-attention is naturally way to capture
these relationships. In this paper, TSN adopts the scaled dot-

product form of attention. Therefore, for a particular node v ðtiÞi , its
Queries, Keys and Values can be written as:

Q i ¼ ðHðlþ1Þi þ PÞ �WQ ;Ki ¼ ðHðlþ1Þi þ PÞ �WK and

Vi ¼ ðHðlþ1Þi þ PÞ �WV , where WQ 2 Rdðlþ1Þ�dðlþ1Þ ;WK 2 Rdðlþ1Þ�dðlþ1Þ and

WV 2 Rdðlþ1Þ�dðlþ1Þ . Formally, the self-attention can be formulated as:

AttðQ i;Ki;ViÞ ¼ softmaxðQ i � K>i =
ffiffiffiffiffiffiffiffiffiffiffi
dðlþ1Þ

q
Þ � Vi ð12Þ

Same to causal convolution operation in TCN, TSN should only
depend on the historical representations of each node. In other
words, TSN also need to ensure that past information should not
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be visible to future. To prevent information leakage from the future
into the past, a special visible matrix M 2 Rn�n is defined as follows.

Mij ¼
0 til225 6 tj
�1 ti > tj

�
ð13Þ

Formally, the temporal self-attention can be defined as:

AttmaskðQ i;Ki;ViÞ ¼ softmax½ðQ i � K>i þMÞ=
ffiffiffiffiffiffiffiffiffiffiffi
dðlþ1Þ

q
� � Vi

2 Rn�dðlþ1Þ ð14Þ
Similar to previous work [69], multihead attention mechanism is
also adopted in this work. Thus, temporal multihead self-attention
can be formulated as:

AttmaskðQ i;Ki;ViÞ ¼ Concatðhead1
; � � � ;headj

; � � � ;headHÞ
�WO

2 Rn�dðlþ1Þ ð15Þ

headj
i ¼ softmax½ðQ j

i � Kj
i

> þMÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðlþ1Þ=H

q
� � Vj

i ð16Þ

where Q j
i ¼ ðHðlþ1Þi þ PÞ �Wj

Q ;K
j
i ¼ ðHðlþ1Þi þ PÞ �Wj

K ;V
j
i ¼

ðHðlþ1Þi þ PÞ �Wj
V ;W

j
Q 2 Rdðlþ1Þ�dðlþ1Þ

H ;Wj
K 2 Rdðlþ1Þ�dðlþ1Þ

H ;Wj
V 2 Rdðlþ1Þ�dðlþ1Þ

H

and WO 2 Rdðlþ1Þ�dðlþ1Þ . Then, the output of temporal multihead self-
attention is fed into an feed-forward neural network (FFN) followed
by residual connections:

Si ¼ ½ReLUðAttmaskðQ i;Ki;ViÞWF þ bFÞ þ AttmaskðQ i;Ki;ViÞ�
þ ðHðlþ1Þi þ PÞ

ð17Þ

where WF 2 Rdðlþ1Þ�dðlþ1Þ ;bF is a bias term, and

Si ¼ ½Sið0Þ; � � � ; SiðtÞ; � � � ; SiðTÞ� 2 Rn�dðlþ1Þ is the output of 1th TSN
layer. Although the temporal self-attention block can stack multiple
TSN layers, in fact, it only slightly improve the model performance.
Accordingly, this work adopts a single layer of TSN.

4.5. News Predictor

For the node v ðtiÞi ’s feature representations Uðrþ1Þi and Si output
by the DGNF-tcn and the DGNF-tsn at different time steps, we take

Uðrþ1Þi ðTÞ and SiðTÞ as the final feature representations of node v i,
respectively. The representation of G is the average of all the node
embeddings in GðTÞ, which is then passed through a feed-forward
neural network (FFN) layer and a softmax layer to predict the
veracity of G. Concretely,

ŷtcn ¼ softmax r
XN Tð Þ

i¼1
Uðrþ1Þi Tð Þ

 !
=N Tð Þ

 !
WP1

" #
þ bP1

 !
ð18Þ

ŷtsn ¼ softmax r
XN Tð Þ

i¼1
Si Tð Þ

 !
=N Tð Þ

 !
WP2

" #
þ bP2

 !
ð19Þ

where

Uðrþ1Þi ðTÞ 2 R1�dðlþ1Þ ; Si Tð Þ 2 R1�dðlþ1Þ ;WP1 2 Rdðlþ1Þ�2;WP2 2 Rdðlþ1Þ�2;

bP1 2 R1�2 and bP2 2 R1�2 are bias term, and rð�Þ is an activation
function. ŷtcn ¼ ½ŷ0

tcn; ŷ
1
tcn� and ŷtsn ¼ ½ŷ0

tsn; ŷ
1
tsn� denote that the proba-

bility of a given dynamic news propagation graph is real (i.e.,
ŷ0
tcn ¼ 0 or ŷ0

tsn ¼ 0) or fake (i.e., ŷ1
tcn ¼ 1 or ŷ1

tsn ¼ 1).

4.6. Objective Function

In this subsection, we present the objective function used to
train DGNF-tcn and DGNF-tsn when being applied to fake news
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detection task. Because the fake detection task is viewed as a bin-
ary classification task in this work, for a given dynamic news prop-
agation graph, we could define the objective functions of DGNF-tcn
and DGNF-tsn as follows.

Ltcn Htcnð Þ ¼ �y log ŷ1
tcn

� �� 1� yð Þ log 1� ŷ0
tcn

� � ð20Þ

Ltsn Htsnð Þ ¼ �y log ŷ1
tsn

� �� 1� yð Þ log 1� ŷ0
tsn

� � ð21Þ
in which Htcnand Htsnrepresent the parameters of DGNF-tcn and
DGNF-tsn, respectively. The DGNF-tcn and DGNF-tsn models are
trained by minimizing the corresponding objective function (i.e.,
Eq. 20 and Eq. 21).

5. Experiments

5.1. Datasets

In this work, we evaluate DGNF-tcn and DGNF-tsn over three
datasets (i.e, Weibo, FakeNewsNet and Twitter), which are widely
used public benchmark for detecting fake news. FakeNewsNet
and Twitter datasets is constructed from Twitter social media plat-
form, while Weibo dataset is constructed from Chinese Sina Weibo
social media platform. Because all datasets contain time stamps,
retweet or reply relationships, and textual information, we can
build a discrete dynamic news propagation network for each piece
of social media news. Table 1 summarizes more detailed statistics
of three real-world and publicly available datasets.

� Weibo: This Weibo dataset is generated by Ma et al. [46], and
collected from the Sina Weibo platform which is one of the
most popular Chinese online social media platforms. After
pre-processing this dataset, we present the number of items
finally used in this paper and more details in Table 1.
� FakeNewsNet: The FakeNewsNet dataset is first presented in
[24]. The news content is crawled from GossipCop5 and
PolitiFact6. The tweets, retweets and replies concerning a piece
of news article are crawled from twitter social media platform
via Twitter API. After pre-processing this dataset, we present
the number of items finally used in this paper and more details
in Table 1.
� Twitter: The Twitter dataset is generated by Ma et al. [70]. The
Twitter dataset actually consists of Twitter15 and Twitter 16
datasets. In our work, the non-rumors and real rumors in these
two Twitter datasets are regarded as real and fake news, which
differs from rumor detection task in some previous research
[70]. After pre-processing this dataset, Table 1 shows more
details and the number of items finally used in this paper.

Same to previous work [64,71,5], the source tweet, retweets, and
replies are regard as nodes. We treat the interactions between
nodes such as retweet or reply behaviors as edges. The recorded
time stamps of retweets or replies are regard as time the edges were
created.

5.2. Experimental Setup

To facilitate the comparison with existing work [64,71], each
fake news dataset is split into into training and test sets, containing
80% and 20% social media news, respectively. Moreover, we per-
formed the experiments with fivefold cross-validation, which is
consistent with existing research. For Weibo and FakeNewsNet
datsets, we set the time points of each snapshot as [0.0, 0.5, 1.0,



Table 1
The statistics of three benchmark fake detection datasets [5].

Statistic Weibo FakeNewsNet Twitter

# of fake news 2,131 2,079 578
# of real news 2,207 2,089 569
# of users 1,309,645 45,109 29,858
Avg. time length 1577 Hours 1951 Hours 158 Hours
Avg. # of tweets 378 42 30
Max. # of tweets 1999 1315 323
Min. # of tweets 10 3 2
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1.5, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256.0, 512.0, 1024.0,
2048.0, max] hours (i.e., n ¼ H ¼ 16), while the Twitter dataset is
set as [0.0, 0.5, 1.0, 1.5, 2.0, 4.0, 8.0, max] hours (i.e., n ¼ H ¼ 8).
Therefore, for Weibo and FakeNewsNet datsets, the number of
TCN layers could be set as 4 (i.e., r ¼ 3), and the Twitter dataset
only need set as 3 (i.e., r ¼ 2). Because we used the pretrained Goo-
gle BERT embedding to represent each token in a sentence [72], the
dimension of word vectors is d ¼ 768. For structure-aware compo-
nent, we set the number of GAT layers as 2 (i.e., l ¼ 1), and the

dimension of output features of 2th GAT layer is set as 64 (i.e.,

Hðlþ1Þi ¼ Hð2Þi 2 Rn�dðlþ1Þ ¼ Rn�64). Specifically, we used the default
setting of GAT in structure-aware component. We train DGNF-tcn
and DGNF-tsn with a learning rate of 1e�5. Because the input of
DGNF is a collection of static news propagation network snapshots
G ¼ fGð1Þ; � � � ;GðtÞ; � � � ;GðTÞg, we set batchsize and the number of
epochs as 1 and 200, respectively. Four standard evaluation met-
rics (i.e., accuracy, precision, recall, and the F1 score) in fake news
detection are adopted to help readers understand of the models’
performance.

5.3. Baseline Approaches

The baseline methods consist of commonly used machine learn-
ing models (i.e., DTC [15], SVM-TS [73], and SVM-RBF [36]) trained
on different hand-engineered features, and deep learning models
(i.e., RvNN [63], StA-HiTPLAN [49], GAT [68], GCN [74], VAE-GCN
[75], BiGCN [64], STS-NN [71] and DynGCN [67]) trained on net-
work structure and content semantics features. DTC model is
designed based on decision tree algorithm [15]. SVM-RBF and
SVM-TS are support vector machine-based algorithms which uti-
lize statistics and temporal features to predict the authenticity of
news [73,36]. RvNN utilizes tree-structured RNN to encodes text
and network features for fake news detection [63]. StA-HiTPLAN
is a neural network algorithm that model long distance interac-
Table 2
Performance comparisons of different methods on Weibo dataset.

Method Accuracy Fake News

Precision Recall

DTC 0.809 0.806 0.813
SVM-RBF 0.823 0.824 0.820
SVM-TS 0.859 0.825 0.891
RvNN 0.896 0.904 0.883

StA-HiTPLAN 0.870 0.869 0.866
GAT 0.931 0.924 0.937
GCN 0.932 0.923 0.940

VAE-GCN 0.906 0.907 0.902
BiGCN 0.933 0.928 0.939
STS-NN 0.912 0.912 0.908
DynGCN 0.937 0.934 0.937
DGNF-tsn 0.956 0.960y 0.951
DGNF-tcn 0.957 0.958 0.954

y Bold text indicates the maximum value.
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tions between tweets through a multi-layer transformer network
[49]. GAT [68] and graph convolutional networks (GCN) [74] are
the most popular static graph-based representation learning algo-
rithms. To make fair comparisons, we set the number of layers of
GAT and GCN as 2. VAE-GCN [75] stands for Variational Graph
Autoencoder-GCN, which utilizes a encoder and decoder architec-
ture to identify fake news. BiGCN is a GCN-based fake news detec-
tion algorithm and represents news diffusion path through the way
of top-down and bottom-up trees [64]. STS-NN models news prop-
agation graph with deep spatial temporal neural network [71].
DynGCN [67] is a DTDG-based fake news detection model that
models static snapshots using GCN and models temporal informa-
tion using scaled dot-product and additive attention mechanism.

5.4. Results and Analysis

To demonstrate the effectiveness of the proposed method, in
this subsection, we evaluate DGNF-tsn and DGNF-tcn using three
real-world benchmark datasets. We respectively report the news
classification results of the baselines and our methods on three
real-world benchmark datasets in Table 2, Table 3 and Table 4 with
the best model high lighted in bold font. From these tables, we can
yield the following observations:

� Overall, we start by observing that DGNF-tsn and DGNF-tcn
achieve better performance compared to all baseline algorithms
in terms of accuracy and F1 score across three real-world bench-
mark datasets, which suggests that temporal variations in graph
structure preserved in our model provides effective information
to help improve fake news detection.
� Moreover, another important observation is that most of the
common machine learning based algorithms (e.g., DTC and
SVM-TS) that highly depend on the hand-engineered features
show significantly decreased F1 and accuracy, which is
consistent with existing research, and partly explained by the
fact that deep learning-based fake news detection algorithms
can bypass feature engineering and capture complex patterns
automatically.
� There is no clear evidence showing superiority of any static
network-based approaches over others. Graph neural
network-based models outperform RNN and transformer based
methods in the identification of fake news in terms of accuracy
and F1 score. Although GAT, GCN and BiGCN fail to capture tem-
poral information, we yet can observe that GAT, GCN and BiGCN
achieve better performance than most baselines across various
benchmark datasets. These results further verify the advantage
of news propagation network-based models in identifying fake
Real News

F1 Score Precision Recall F1 Score

0.810 0.812 0.806 0.809
0.822 0.821 0.825 0.823
0.850 0.871 0.818 0.836
0.893 0.889 0.909 0.899
0.867 0.871 0.874 0.872
0.931 0.939 0.926 0.932
0.931 0.941 0.924 0.933
0.904 0.906 0.911 0.908
0.930 0.940 0.929 0.930
0.910 0.911 0.915 0.913
0.936 0.939 0.937 0.938
0.955 0.953 0.962 0.957
0.957 0.957 0.960 0.958



Table 3
Performance comparisons of different methods on FakeNewsNet dataset.

Method Accuracy Fake News Real News

Precision Recall F1 Score Precision Recall F1 Score

DTC 0.782 0.780 0.783 0.782 0.783 0.780 0.781
SVM-RBF 0.788 0.786 0.789 0.787 0.789 0.786 0.788
SVM-TS 0.811 0.808 0.796 0.791 0.828 0.820 0.809
RvNN 0.828 0.827 0.796 0.801 0.818 0.857 0.829

StA-HiTPLAN 0.800 0.802 0.794 0.798 0.797 0.805 0.801
GAT 0.885 0.886 0.883 0.884 0.884 0.887 0.885
GCN 0.873 0.872 0.874 0.873 0.874 0.873 0.873

VAE-GCN 0.865 0.865 0.863 0.864 0.864 0.866 0.865
BiGCN 0.889 0.890 0.888 0.889 0.888 0.891 0.890
STS-NN 0.858 0.867 0.847 0.857 0.848 0.868 0.858
DynGCN 0.896 0.897 0.894 0.895 0.895 0.898 0.896
DGNF-tsn 0.922y 0.925 0.918 0.921 0.919 0.926 0.922
DGNF-tcn 0.917 0.916 0.919 0.917 0.919 0.916 0.917

y Bold text indicates the maximum value.

Table 4
Performance comparisons of different methods on Twitter dataset.

Method Accuracy Fake News Real News

Precision Recall F1 Score Precision Recall F1 Score

DTC 0.704 0.717 0.683 0.699 0.693 0.726 0.709
SVM-RBF 0.732 0.740 0.724 0.731 0.725 0.741 0.733
SVM-TS 0.707 0.715 0.698 0.706 0.700 0.717 0.709
RvNN 0.805 0.818 0.788 0.803 0.793 0.822 0.807

StA-HiTPLAN 0.780 0.777 0.783 0.780 0.782 0.776 0.779
GAT 0.865 0.879 0.849 0.864 0.852 0.882 0.866
GCN 0.858 0.860 0.855 0.858 0.857 0.861 0.859

VAE-GCN 0.841 0.847 0.836 0.841 0.836 0.847 0.841
BiGCN 0.864 0.867 0.862 0.865 0.861 0.866 0.863
STS-NN 0.834 0.838 0.829 0.834 0.829 0.838 0.833
DynGCN 0.873 0.884 0.861 0.872 0.862 0.885 0.873
DGNF-tsn 0.899y 0.899 0.897 0.892 0.899 0.901 0.900
DGNF-tcn 0.891 0.897 0.886 0.891 0.885 0.897 0.891

y Bold text indicates the maximum value.

Table 5
Ablation study results on Weibo dataset.

Method Accuracy Fake News Real News

Precision Recall F1 Score Precision Recall F1 Score

DGNF-tsnþ 0.959y 0.967 0.952 0.959 0.951 0.966 0.958
DGNF-tcnþ 0.958 0.963 0.955 0.959 0.954 0.962 0.958
DGNF-tsn� 0.949 0.956 0.943 0.950 0.942 0.955 0.949
DGNF-tcn� 0.948 0.952 0.946 0.950 0.945 0.951 0.948
DGNF-tsn� 0.955 0.957 0.955 0.956 0.953 0.955 0.954
DGNF-tcn� 0.955 0.960 0.948 0.954 0.951 0.962 0.956
DGNF-tsn 0.956 0.960 0.951 0.955 0.953 0.962 0.957
DGNF-tcn 0.957 0.958 0.954 0.957 0.957 0.960 0.958

y Bold text indicates the maximum value.

Table 6
Ablation study results on FakeNewsNet dataset.

Method Accuracy Fake News Real News

Precision Recall F1 Score Precision Recall F1 Score

DGNF-tsnþ 0.925y 0.925 0.925 0.925 0.926 0.926 0.926
DGNF-tcnþ 0.919 0.921 0.919 0.920 0.918 0.920 0.919
DGNF-tsn� 0.916 0.920 0.911 0.915 0.912 0.921 0.917
DGNF-tcn� 0.911 0.905 0.918 0.912 0.917 0.904 0.911
DGNF-tsn� 0.921 0.927 0.914 0.921 0.914 0.928 0.921
DGNF-tcn� 0.918 0.920 0.916 0.918 0.917 0.920 0.919
DGNF-tsn 0.922 0.925 0.918 0.921 0.919 0.926 0.922
DGNF-tcn 0.917 0.916 0.919 0.917 0.919 0.916 0.917

y Bold text indicates the maximum value.
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Table 7
Ablation study results on Twitter dataset.

Method Accuracy Fake News Real News

Precision Recall F1 Score Precision Recall F1 Score

DGNF-tsnþ 0.904y 0.912 0.896 0.904 0.896 0.912 0.904
DGNF-tcnþ 0.895 0.907 0.883 0.895 0.885 0.908 0.896
DGNF-tsn� 0.890 0.888 0.896 0.892 0.893 0.885 0.889
DGNF-tcn� 0.885 0.891 0.879 0.885 0.879 0.890 0.885
DGNF-tsn� 0.899 0.904 0.899 0.900 0.897 0.899 0.898
DGNF-tcn� 0.890 0.888 0.896 0.892 0.893 0.885 0.889
DGNF-tsn 0.899 0.899 0.897 0.892 0.899 0.901 0.900
DGNF-tcn 0.891 0.897 0.886 0.891 0.885 0.897 0.891

y Bold text indicates the maximum value.
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news, and the ability in modeling fine-grained structure infor-
mation of news propagation network.
� For DTDG-based fake news detection methods, DGNF-tsn and
DGNF-tcn outperform DynGCN in the identification of fake news
w.r.t. all of the evaluation metrics. One possible reason is that
DynGCN learns the temporal propagation patterns from the
graph-level, while DGNF-tsn and DGNF-tcn from the node-
level, which leads to a more fine-grained nodal relationship
modeling for dynamic news propagation graphs.
� When comparing the proposed dynamic modeling methods
(i.e., DGNF-tsn and DGNF-tcn), DGNF-tsn shows better overall
performance. We conjecture that TSN can flexibly capture the
interactions between nodes over multiple time steps, while
TCN fails to extract the internal correlation information of node
features over discrete time steps.
Fig. 5. (a) Impact of the check time stamps in detecting fake news on Weibo
dataset; (b) Impact of the check time stamps in detecting fake news on
FakeNewsNet dataset; (c) Impact of the check time stamps in detecting fake news
on Twitter dataset.
5.5. Ablation Study

In this subsection, we conduct experiments to further examine
the effect of the time intervals of snapshots on DGNF-tsn and
DGNF-tcn. Specifically, we make comparisons with the following
variants of DGNF-tsn and DGNF-tcn:

� DGNF-tsnþ and DGNF-tcnþ: For Weibo and FakeNewsNet dat-
sets, we set the time point of each snapshot as [0.25, 0.5, 0.75,
1.0, 1.25, 1.5, 1.75, 2.0, 3.0, 4.0, 6.0, 8.0, 12.0, 16.0, 24.0, 32.0,
48.0, 64.0, 96.0, 128.0, 192.0, 256.0, 384.0, 512.0, 768.0,
1024.0, 1536.0, 2048.0, max] hours, while the Twitter dataset
is set as [0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 3.0, 4.0,
6.0, 8.0, max] hours.
� DGNF-tsn� and DGNF-tcn�: For Weibo and FakeNewsNet dat-
sets, we set the time point of each snapshot as [0.0, 1.0, 2.0,
8.0, 32.0, 128.0, 512.0, 2048.0, max] hours, while the Twitter
dataset is set as [0.0, 1.0, 2.0, 8.0, max] hours.
� DGNF-tsn� and DGNF-tcn�: In structure-aware module, the GAT
is replaced by GCN.

We present the experimental results of these variants in Table 5,
Table 6 and Table 7. We start by observing that accuracy and
F1 score for DGNF-tsnþ and DGNF-tcnþ is larger than the accuracy
and F1 score for DGNF-tsn and DGNF-tcn, whereas the results are
opposite for DGNF-tsn� and DGNF-tcn�. This signals that the sam-
pling frequency for news propagation network, to some extent,
affects the experimental results. Another observation is that, com-
pared to DGNF-tsn and DGNF-tcn, DGNF-tsn� and DGNF-tcn� that
depend on GCN show slightly decreased accuracy and F1 score.
5.6. Early Fake News Detection

A problem with fake news detection using real-world data is
that there are the limited fake news instances observed for an
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algorithm to effectively identify fake news at the early stage of
news propagation. Identifying fake news at the early stage is par-
ticularly crucial for taking early actions for fake news intervention
before more individuals become exposed to fake news. To better



Table 8
Comparisons of average running time each epoch among some baselines (Minutes)
[5].

Method Weibo FakeNewsNet Twitter

GAT 1.1 0.7 0.3
GCN 0.7 0.6 0.2
BiGCN 2.9 1.5 0.8
DynGCN 5.1 2.9 1.0
TGNF 54.2* 5.4 12.4

DGNF-tsn 6.7 3.7 1.5
DGNF-tcn 6.6 3.4 1.4

* Bold text indicates the maximum value.
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understand how the propagation time influence the performance
of DGNF-tsn, DGNF-tcn and existing algorithms, we further evalu-
ate their performance by accuracy on early fake news detection.
We treat the news propagation timestamp as the detection dead-
line, which means that the tweets or replies published after the
detection deadline are unavailable. By varying check time stamps
in the range of f0;10;20;30;40;50;60;70;80g minutes, the accu-
racy of several competitive models and the proposed method on
three benchmark datasets is shown in Fig. 5. It can be observed
from Fig. 5 that with the change of time delays, our model gener-
ally has a comparable performance compared to baselines in terms
of early fake news detection accuracy across three benchmark
datasets.

5.7. Comparison of the execution time

The static graph-based methods only need to process one com-
pleted news propagation graph each time. However, because DGNF
model news propagation from the perspective of DTDG, and the
input of DGNF is a collection of static news propagation network
snapshotsG ¼ fGð1Þ; � � � ;GðtÞ; � � � ;GðTÞg over discrete time stamps,
DGNF have to spend more execution time in the process of model
Table 10
Performance comparisons of DGNF-tsn, DGNF-tcn and TGNF on FakeNewsNet dataset.

Method Accuracy Fake News

Precision Recall F1

TGNF 0.935y 0.937 0.932 0
DGNF-tsn 0.922 0.925 0.918 0
DGNF-tcn 0.917 0.916 0.919 0

y Bold text indicates the maximum value.

Table 11
Performance comparisons of DGNF-tsn, DGNF-tcn and TGNF on Twitter dataset.

Method Accuracy Fake News

Precision Recall F1

TGNF 0.923y 0.932 0.914 0
DGNF-tsn 0.899 0.899 0.897 0
DGNF-tcn 0.891 0.897 0.886 0

y Bold text indicates the maximum value.

Table 9
Performance comparisons of DGNF-tsn, DGNF-tcn and TGNF on Weibo dataset.

Method Accuracy Fake News

Precision Recall F1

TGNF 0.968y 0.962 0.975 0
DGNF-tsn 0.956 0.960 0.951 0
DGNF-tcn 0.957 0.958 0.954 0

y Bold text indicates the maximum value.
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learning. Table 8 compares the average running time of baseline
methods and also the CTDG-based method TGNF [5] on three real
world datasets in one epoch. The reason why we choose these
methods is that they are all GNN-based methods and show better
performance. All experiments are conducted on GeForce RTX
2080Ti GPU. Compared to the methods based on static news
propagation graph, we observe that DGNF consistently shows a
longer running time for each epoch across all the datasets. As
shown in Table 9, Table 10 and Table 11, TGNF shows better perfor-
mace than DGNF, the reason of which is that TGNF takes a more
fine-grained way (i.e., CTDG) to model social media news dissem-
ination network. However, DGNF shows better in learning effi-
ciency [76] because it achieves greater accuracy improvement
with less model learning time (actually, also with less computing
resources).

6. Conclusion

In this paper, we study the problem of dynamic news propaga-
tion graph-based fake news detection task. Our contribution
focuses on introducing a DTDG-based fake news detection method
named DGNF, which utilizes structure-aware module and
temporal-aware module to explicitly capture the temporal and
network structure information, respectively. Specifically, we also
provide, by designing two temporal-aware modules, two variants
of DGNF, DGNF-tsn and DGNF-tcn. We conduct extensive experi-
ments on three real-world benchmark datasets, and the identifica-
tion results suggest that incorporating the temporal propagation
and network structure information of online social media news
can help fake news detection task to make more accurate predic-
tions. Whereas the work presented in this paper focuses on the
case of homogeneous discrete-time dynamic news propagation
graph-based fake news detection task, in the future, complemen-
tary line of research could study and integrate social media user
profiles using temporal heterogeneous news propagation graphs.
Real News

Score Precision Recall F1 Score

.935 0.933 0.928 0.931

.921 0.919 0.926 0.922

.917 0.919 0.916 0.917

Real News

Score Precision Recall F1 Score

.923 0.914 0.932 0.923

.892 0.899 0.901 0.900

.891 0.885 0.897 0.891

Real News

Score Precision Recall F1 Score

.969 0.974 0.960 0.967

.955 0.953 0.962 0.957

.957 0.957 0.960 0.958
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